
Theory of current-driven instability experiments in magnetic Taylor-Couette flows

Günther Rüdiger* and Manfred Schultz†

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Dima Shalybkov‡

A.F. Ioffe Institute for Physics and Technology, 194021, St. Petersburg, Russia

Rainer Hollerbach§

Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
�Received 15 November 2006; revised manuscript received 11 June 2007; published 14 November 2007�

We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic
fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one
is stationary. The magnetic Prandtl number can be as small as 10−5, approaching realistic liquid-metal values.
The magnetic field destabilizes the flow, except for radial profiles of B��R� close to the current-free solution.
The profile with Bin=Bout �the most uniform field� is considered in detail. For weak fields the Taylor-Couette
flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow
again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields �as
measured by the Hartmann number� the toroidal field is always unstable, even for the nonrotating case with
Re=0. The electric currents needed to generate the required toroidal fields in laboratory experiments are a few
kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so
a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat
larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.
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I. MOTIVATION

Taylor-Couette flows between rotating concentric cylin-
ders are among the fundamental problems in classical hydro-
dynamic stability theory, with an enormous range of possible
flow states and transitions between different states. The mag-
netohydrodynamic analog of this problem, in which the fluid
is electrically conducting and a magnetic field is externally
applied, is equally important in hydromagnetic stability
theory �1�. The earliest experiments on this magnetohydro-
dynamic problem were by Donnelly et al. �2,3� in the early
1960s, and focused on the inhibition of Taylor vortices by the
application of increasingly strong magnetic fields. Despite
the rather good agreement between the experimental results
and Chandrasekhar’s �1� theoretical predictions �see also �4�
for more recent numerical work�, the subject attracted rela-
tively little further attention, most likely due to the difficul-
ties of doing experiments with liquid metals.

Another intriguing aspect of magnetohydrodynamic
Taylor-Couette flows is the so-called magnetorotational in-
stability �MRI�, first discovered by Velikhov in 1959 �5�.
What makes the MRI particularly interesting is that the mag-
netic field now has a destabilizing effect, exactly the opposite
of the stabilizing effect that it had in Donnelly’s experiments.
The difference is that Donnelly was operating to the left of
the so-called Rayleigh line, where the flow may be destabi-

lized purely hydrodynamically, and the addition of a mag-
netic field then has a stabilizing influence, whereas Velikhov
was considering flows to the right of the Rayleigh line,
where the flow is hydrodynamically stable, and the addition
of a magnetic field may have a destabilizing influence.

However, despite its undeniable charm as a new type of
hydromagnetic instability, for many decades the MRI also
attracted very little further attention. It was only with the
realization that it was likely to be of considerable importance
in astrophysical fluid dynamics �6� that interest revived, and
experimentalists started thinking about studying it in the
laboratory. The original designs �7,8� called for a purely
axial magnetic field, which requires very large rotation rates
though, due to the extremely small magnetic Prandtl num-
bers of liquid metals. Instead, Hollerbach and Rüdiger �9�
suggested adding an azimuthal field, which turns out to re-
duce the required rotation rates by several orders of magni-
tude. This new design has been implemented experimentally
�10–12�, and does indeed yield traveling-wave disturbances
in agreement with the theoretical predictions �9�.

The azimuthal field required to obtain this traveling-wave
MRI was generated by an electric current, up to 8 kA, flow-
ing along a copper rod running down the central axis, inside
the inner cylinder. Within the fluid the field is therefore
current-free, B��1/R. In this work, we wish to consider how
the situation is altered if instead the current is allowed to
flow directly through the fluid as well. This allows for fun-
damentally new instabilities, namely so-called current-driven
or Vandakurov-Tayler instabilities �13,14�. Because the
source of energy is now the current rather than the differen-
tial rotation, these �nonaxisymmetric� instabilities can exist
even without any differential rotation at all �very much un-
like the MRI�, provided only the current is sufficiently large.
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The main point we wish to demonstrate in this work is that
currents no greater than the 8 kA already used in the MRI
experiments �10–12� are sufficient to generate current-driven
instabilities as well. We therefore present a detailed series of
numerical calculations outlining the optimal design for ob-
taining current-driven instabilities in Taylor-Couette experi-
ments.

Finally, although in this work we will focus exclusively
on the details of a possible laboratory experiment, we note
briefly that the combination of current-driven instabilities
and differential rotation may also be relevant to a broad
range of astrophysical problems, including the stability of the
solar tachocline, the existence of active solar longitudes �15�,
the flip-flop phenomenon of stellar activity �16�, A-star mag-
netism �17�, and dynamo action in stably stratified stars �18�.

II. EQUATIONS

According to the Rayleigh criterion, an ideal flow is stable
against axisymmetric perturbations whenever the specific an-
gular momentum increases outwards

d

dR
�R2��2 � 0, �1�

where �R , � , z� are cylindrical coordinates and � is the
angular velocity. The necessary and sufficient condition for
the axisymmetric stability of an ideal Taylor-Couette flow
with an imposed azimuthal magnetic field B� is

1

R3

d

dR
�R2��2 −

R

�0�

d

dR
�B�

R
�2

� 0, �2�

where �0 is the permeability and � the density �1,19�. In
particular, all ideal flows can thus be destabilized, by azi-

muthal magnetic fields with the right profiles and amplitudes.
Any fields increasing outward more slowly than B��R, in-
cluding in particular the outwardly decreasing current-free
field B��1/R, have a stabilizing influence though �5�.

Tayler �14� found the necessary and sufficient condition

−
d

dR
�RB�

2 � � 0 �3�

for the nonaxisymmetric stability of an ideal fluid at rest.
Outwardly increasing fields are therefore unstable now �but
B��1/R is still stable�. If this condition �3� is violated, the
most unstable mode has azimuthal wave number m=1. In
this paper, we wish to consider how these Tayler instabilities
are modified if the fluid is not at rest, but is instead differen-
tially rotating.

We will find that, depending on the magnitudes of the
imposed differential rotation and magnetic fields, and also on
the magnetic Prandtl number, a magnetic field may either
stabilize or destabilize the differential rotation, and the most
unstable mode may be either the axisymmetric Taylor vortex
flow, or the nonaxisymmetric Tayler instability. We focus on
the limit of small magnetic Prandtl numbers appropriate for
liquid metals, and calculate the rotation rates and electric
currents that would be required to obtain some of these in-
stabilities in liquid metal laboratory experiments.

The governing equations are

�U

�t
+ �U��U = −

1

�
� P + �	U +

1

�0
curl B 
 B , �4�

�B

�t
= curl�U 
 B� + �	B , �5�

and

div U = div B = 0, �6�

where U is the velocity, B the magnetic field, P the pressure,
� the kinematic viscosity, and � the magnetic diffusivity.

The basic state is UR=Uz=BR=Bz=0 and

U� = R� = a�R +
b�

R
, B� = aBR +

bB

R
, �7�

where a�, b�, aB, and bB are constants defined by

a� = �in
�̂� − �̂2

1 − �̂2 , b� = �inRin
2 1 − �̂�

1 − �̂2 ,

aB =
Bin

Rin

�̂��̂B − �̂�
1 − �̂2 , bB = BinRin

1 − �̂B�̂

1 − �̂2 , �8�

where

�̂ =
Rin

Rout
, �̂� =

�out

�in
, �̂B =

Bout

Bin
. �9�

Rin and Rout are the radii of the inner and outer cylinders, �in
and �out are their rotation rates �we will in fact fix �out=0
for all results presented here�, and Bin and Bout are the azi-
muthal magnetic fields at the inner and outer cylinders. The

FIG. 1. �Color online� The basic state profiles of B��R�, for �̂
=0.5. Remembering that B��1� has been normalized to 1, we find
that �̂B is given simply by B��2�, and can therefore be read off the
right-hand axis. The stability domain for m=1 �see Eq. �21�� is
cross-hatched; the cross-hatched and hatched domains together are
the stability domain for m=0 �see Eq. �22��. The current-free solu-
tion B�=1/R is given by the gray line ��̂B=0.5�. The electric cur-
rents inside and outside the inner cylinder are parallel above �̂B

=0.5 and antiparallel below �̂B=0.5; that is, the signs of aB and bB

are the same above 0.5, and opposite below.
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possible magnetic field solutions are plotted in Fig. 1. Note
though that—unlike �, where �in and �out are the physically
relevant quantities—for B� the fundamental quantities are
not so much Bin and Bout, but rather aB and bB themselves. In
particular, a field of the form bB /R is generated by running
an axial current only through the inner region R�Rin,
whereas a field of the form aBR is generated by running an
axial current through the entire region R�Rout, including the
fluid. One of the aspects we will be interested in later on is

how large these currents must be, and whether they could be
generated in a laboratory experiment.

We are interested in the linear stability of the basic state
�7�. The perturbed quantities of the system are given by

uR, R� + u�, uz, bR, B� + b�, bz. �10�

Applying the usual normal mode analysis, we look for solu-
tions of the linearized equations of the form

FIG. 2. Marginal stability curves for m=0 �dashed� and m=1 �solid�. The hatched area is thus the region that is stable to both. Magnetic
Prandtl numbers as indicated on each plot.

FIG. 3. The marginal stability curves for m=0 �dashed� and m=1 �solid�. Pm=10−5, �̂=0.5, �̂�=0, and �̂B as indicated. Note also how
the critical Reynolds numbers are always of the same order of magnitude as the nonmagnetic result 68, which is easy to achieve in the
laboratory.
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F = F�R�exp�i�kz + m� + 
t�� . �11�

The dimensionless numbers of the problem are the magnetic
Prandtl number Pm, the Hartmann number Ha, and the Rey-
nolds number Re, given by

Pm =
�

�
, Ha =

BinR0

��0���
, Re =

�inR0
2

�
, �12�

where R0= �Rin�Rout−Rin��1/2 is the unit of length.
Using Eq. �11�, linearizing Eqs. �4� and �5�, and represent-

ing the result as a system of first order equations, we have
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where X2, X3, and X4 are defined as

X2 =
du�

dR
+

u�

R
, X3 =

duz

dR
, X4 =

db�

dR
+

b�

R
. �14�

Length has been scaled by R0, time by �in
−1, the basic state

angular velocity by �in, the perturbation velocity by � /R0,
and the magnetic fields, both basic state and perturbation, by
Bin.

An appropriate set of ten boundary conditions is needed
to solve the system �13�. For the velocity the boundary con-
ditions are always no-slip,

FIG. 4. The instability lines for �̂B=1 �shown in Fig. 3, top
right� for various m. Note that only the m=1 mode exhibits the
Tayler instability.

FIG. 5. The flow pattern �m=1� for a container with conducting walls and a fluid with Pm=10−5. The parameters are Ha=120 and
Re=208 describing the location of the intersection M in Fig. 3 �top right�. The radial profiles of uR �left�, u� �middle�, and uz �right� are
shown. Solid �dashed�: Real �imaginary� part of the solution.
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uR = u� = uz = 0. �15�

For the magnetic field the boundary conditions depend on
whether the walls are insulators or conductors. For conduct-
ing walls the radial component of the field and the tangential
components of the current must vanish, yielding

db�/dR + b�/R = bR = 0. �16�

These boundary conditions are applied at both Rin and Rout.
For insulating walls the boundary conditions are some-

what more complicated; matching to interior and exterior
potential fields then yields

b� =
m

kR
bz, �17�

bR +
ibz

Im�kR�
� m

kR
Im�kR� + Im+1�kR�� = 0, �18�

at R=Rin, and

b� =
m

kR
bz, �19�

bR +
ibz

Km�kR�
� m

kR
Km�kR� − Km+1�kR�� = 0 �20�

at R=Rout, where In and Kn are the modified Bessel functions
�20�.

Given the basic state �7�, Tayler’s stability condition �3� to
nonaxisymmetric perturbations becomes

0 � �̂B �
4�̂�1 − �̂2�

3 − 2�̂2 − �̂4 � �̂1. �21�

Note that �̂1→1 �but is always less than 1� if �̂→1. For
�̂=0.5 we have �̂1=0.62. Similarly, the stability condition to
axisymmetric perturbations becomes

0 � �̂B �
1

�̂
� �̂0. �22�

For �̂=0.5 we have �̂0=2. For 0��̂�1 we always have
�̂1��̂0, so that the stability interval �21� for m=1 is much
smaller than the stability interval �22� for m=0, as shown in
Fig. 1. The current-free solution �̂B=0.5 is of course always
stable.

III. BASIC RESULTS

Figure 2 shows how the stability curves depend on Ha and
Re, for Pm=10, 1, 0.1, and 0.01, with �̂�=0 �stationary
outer cylinder� and �̂B=1 �B� as uniform as possible�. For
Ha=0 we find that m=0 goes unstable before m=1, at the
critical Reynolds number Recrit=68; this is just the familiar
value for the onset of nonmagnetic Taylor vortices �at this
particular radius ratio�. Being entirely nonmagnetic, this
value obviously does not depend on Pm. At the other limiting
case, Re=0, we find that only m=1 goes unstable, at the
critical Hartmann number Hacrit=150. These Tayler instabili-
ties also turn out to be independent of Pm, despite being
driven by the magnetic field.

We are interested in how these two limiting cases Ha=0
and Re=0 are connected, and how the two types of instabili-
ties interact when neither parameter is zero. The two insta-
bilities certainly are connected; the m=1 modes in the two
limiting cases are smoothly joined to one another for all
Prandtl numbers. The nature of the interaction is quite dif-
ferent though, depending on Pm.

TABLE I. Material parameters of liquid metals that might be
used for magnetic TC experiments.

� �g/cm3� � �cm2/s� � �cm2/s�

Sodium 0.92 7.10
10−3 0.81
103

Gallium-indium-tin 6.36 3.40
10−3 2.43
103

TABLE II. Characteristic Hartmann numbers and electric cur-
rents for a wide gap container ��̂=0.25� with conducting walls,
using either sodium or gallium-indium-tin �in brackets�.

�̂B Ha�0� Ha�1� Iaxis �kA� Ifluid �kA�

−10 2.29 2.05 0.0483 �0.152� −1.98 �−6.24�
−5 4.23 3.98 0.0937 �0.296� −1.97 �−6.21�
−4 5.14 4.93 0.116 �0.366� −1.97 �−6.22�
−3 6.63 6.50 0.153 �0.483� −1.99 �−6.27�
−2 9.69 9.71 0.228 �0.721� −2.05 �−6.49�
−1 24.7 22.5 0.530 �1.67� −2.65 �−8.35�

1 � 41.7 0.982 (3.10) 2.94 (9.29)

2 � 13.8 0.325 �1.02� 2.27 �7.17�
3 � 8.27 0.195 �0.614� 2.14 �6.75�
4 � 5.93 0.140 �0.440� 2.09 �6.60�
5 10.8 4.63 0.109 �0.344� 2.07 �6.53�
10 3.23 2.205 0.0519 �0.164� 2.02 �6.39�

TABLE III. As in Table II, but for �̂=0.5, and conducting
boundaries.

�̂B Ha�0� Ha�1� Iaxis �kA� Ifluid �kA�

−10 3.96 5.02 0.161 �0.509� −3.39 �−10.7�
−5 7.73 9.85 0.315 �0.994� −3.47 �−10.9�
−4 9.61 12 0.392 �1.24� −3.53 �−11.1�
−3 12.8 16.2 0.522 �1.65� −3.65 �−11.5�
−2 19.8 24.8 0.807 �2.55� −4.04 �−12.7�
−1 59.3 63.7 2.42 �7.63� −7.25 �−22.9�

1 � 151 6.16 (19.4) 6.16 (19.4)

2 � 35.3 1.44 �4.54� 4.32 �13.6�
3 21.0 20.6 0.840 �2.65� 4.20 �13.2�
4 13.2 14.6 0.538 �1.70� 3.77 �11.9�
5 9.84 11.4 0.401 �1.27� 3.61 �11.4�
10 4.44 5.4 0.181 �0.571� 3.44 �10.8�
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Turning to Pm=1 first, we see that there is relatively little
interaction between rotational and magnetic effects; instabil-
ity simply sets in as long as either Ha�Hacrit or Re�Recrit.
For Pm=10 the situation is very different. There we find a
broad range of parameters, for example, Ha=100 and Re
=50, that would be stable if rotational or magnetic effects
were acting alone, but which are now unstable, due to the
interaction between the two �see also �21��. Finally, for Pm
=0.1 we have the opposite situation, namely a range of pa-
rameters, for example, Ha=100 and Re=100, that would be
unstable if rotational effects were acting alone, but which are
now stable.

Small Pm are generally stabilizing. The opposite is true
for Pm�1. As shown in Fig. 2 �top left�, instability then also
sets in for Hartmann numbers less than 150. In other words,
for Hartmann numbers exceeding around 50, the critical
Reynolds number for the onset of instability is much smaller
than 68.

IV. LIQUID METALS

Having explored the general behavior for a range of mag-
netic Prandtl numbers, we now focus attention on the limit of
very small Pm, such as would apply for experiments involv-
ing liquid metals. We will here consider conducting and in-
sulating boundary conditions separately.

A. Conducting cylinder walls

Figure 3 shows results for various values of �̂B; aB and bB
are the same sign for the values in the top row, and the
opposite sign for the values in the bottom row. The profile
that is closest to being current-free is �̂B=0, and indeed we
find there that even for Ha=200 there is no sign of any
destabilizing influence of the field, for either axisymmetric or
nonaxisymmetric perturbations. For 0��̂B��̂1 the mag-
netic field stabilizes the flow for both m=0 and m=1.

FIG. 6. The same as in Fig. 3 but for insulating cylinder walls.

FIG. 7. The same as in Fig. 5 but for insulating cylinder walls. At the intersection point M the wave number is k=3.56, so the vertical
structure is again comparable to the gap width.
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For �̂1��̂B��̂0 the m=1 mode should be unstable,
while the m=0 mode should be stable. The values �̂B=1 and
�̂B=2 are examples of this situation. There is always a cross-
over point at which the most unstable mode changes from
m=0 to m=1. Note also how for �̂B=1, the critical Reynolds
number increases for the m=0 mode, before suddenly de-
creasing for the m=1 mode �Fig. 3, top right�. We have the
interesting situation therefore that weak fields initially stabi-
lize the TC flow, before stronger fields eventually destabilize
it, via a nonaxisymmetric mode. Beyond Ha=150 �the same
value we saw previously in Fig. 2�, the flow is unstable even
for Re=0.

Except for the almost current-free profile �̂B=0, all other
values share this feature, that there is a critical Hartmann
number beyond which the basic state is unstable even for
Re=0. Let Ha�0� and Ha�1� denote these critical Hartmann
numbers, for m=0 and 1, respectively. For the profiles with
the largest gradients both modes are unstable. Strikingly, in

these cases m=0 is always more unstable than m=1, that is,
Ha�0��Ha�1�; see the plots for �̂B=4 and �̂B=−2 of Fig. 3.

The standard case with �̂B=1 �shown in Fig. 3, top right�
has been considered in more detail. In Fig. 4 the stability
lines for disturbances of higher m are plotted. Note the ex-
ceptional role of the mode with m=1, as the only one that
cannot be stabilized by the differential rotation if the Hart-
mann number exceeds the threshold value. All the modes
other than m=1 are stabilized by the magnetic field.

For the same experiment the flow pattern for m=1 at the
intersection M of the modes m=0 and m=1 is represented in
Fig. 5. There are several cells in radius, but one cannot find
striking anisotropies. The vertical wave number is k=4.58 so
that from the relation

�z

Rout − Rin
=

�

k
� �̂

1 − �̂
, �23�

the vertical extension of a cell is only 68% of the gap width
�here �̂=0.5�. Hence the cells are rather flat and we shall
have not too many problems with the end plates of a real
container. As a nonaxisymmetric instability there is a finite
value of the azimuthal drift of the flow pattern. One can also
describe it as a �nonaxisymmetric� vertical wave. The azi-
muthal drift rate is −0.34, in units of the rotation rate of the
inner cylinder. At the intersection of the curve for m=1 and
the horizontal axis �where Ha=Ha1�, the critical wave num-
ber is k=4.27. The cells are almost spherical.

B. Required electric currents

Let Iaxis be the axial current inside the inner cylinder and
Ifluid the axial current through the fluid �i.e., between inner
and outer cylinder�. The toroidal field amplitudes at the inner
and outer cylinders are then

Bin =
Iaxis

5Rin
, Bout =

�Iaxis + Ifluid�
5Rout

, �24�

where R, B, and I are measured in cm, G, and A. Expressing
Iaxis and Ifluid in terms of our dimensionless parameters one
finds

TABLE IV. As in Table II, but for �̂=0.25, and insulating
boundaries.

�̂B Ha0 Ha1 Iaxis �kA� Ifluid �kA�

−10 3.63 1.79 0.0421 �0.133� −1.73 �−5.45�
−5 6.65 3.55 0.0836 �0.264� −1.76 �−5.54�
−4 8.04 4.42 0.104 �0.328� −1.77 �−5.58�
−3 10.3 5.89 0.139 �0.437� −1.81 �−5.68�
−2 14.7 8.91 0.210 �0.662� −1.89 �−5.60�
−1 30.6 20.5 0.483 �1.52� −2.42 �−7.60�

1 � 30.7 0.723 (2.28) 2.17 (6.84)

2 � 10.7 0.252 �0.794� 1.76 �5.56�
3 � 6.63 0.156 �0.492� 1.72 �5.41�
4 � 4.83 0.114 �0.359� 1.71 �5.39�
5 17.4 3.81 0.0897 �0.283� 1.70 �5.38�
10 5.18 1.86 0.0438 �0.138� 1.71 �5.38�

TABLE V. As in Table II, but for �̂=0.5, and insulating boundaries.

�̂B Ha0 Ha1 Iaxis �kA� Ifluid �kA�

−10 6.09 4.66 0.190 �0.599� −3.99 �−12.6�
−5 11.8 9.31 0.380�1.20� −4.18 �−13.2�
−4 14.6 11.7 0.477 �1.50� −4.29 �−13.5�
−3 19.4 15.7 0.640 �2.02� −4.48 �−14.1�
−2 29.3 25.2 1.03 �3.24� −5.15 �−16.2�
−1 73.6 64.6 2.63 �8.31� −7.89 �−24.9�

1 � 109.0 4.44 (14.0) 4.44 (14.0)

2 � 28.1 1.15 �3.61� 3.45 �10.8�
3 32.6 17.2 0.701 �2.21� 3.51 �11.1�
4 20.5 12.5 0.510 �1.61� 3.57 �11.3�
5 15.3 9.81 0.400 �1.26� 3.60 �11.3�
10 6.86 4.78 0.195 �0.615� 3.71 �11.7�
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Iaxis = 5 Ha
�̂1/2

�1 − �̂�1/2 ��0����1/2 �25�

and

Ifluid =
�̂B − �̂

�̂
Iaxis, �26�

in amperes. Note also how the required currents depend on
the radius ratio �̂, but not on the actual physical dimensions
Rin and Rout. Making the entire device bigger thus reduces
the current density, inversely proportional to the square of
the size. By making the device sufficiently large one can
thereby prevent ohmic heating within the fluid from becom-
ing excessive.

The results for the critical Hartmann numbers are now
applied to two different conducting liquid metals, sodium
and gallium-indium-tin �11�, whose material parameters are
given in Table I. We also wish to consider the effect of vary-
ing the radius ratio �̂. Tables II and III give the values of the
electric currents needed to reach the lesser of Ha�0� and Ha�1�,
for the two values �̂=0.25 and 0.5, and for �̂B ranging from
−10 to 10 in each case. Note that for large 	�̂B	, Ha�0� scales
as 1 / �̂B, and Ifluid approaches a constant value. The calcu-
lated currents are lower for fluids with smaller ��0��� �i.e.,
sodium is better than gallium�.

In these tables, the most interesting experiment, with the
almost uniform field �̂B=1 �see Fig. 3, top right� is indicated
in bold. For a container with a medium gap of �̂=0.5, par-
allel currents along the axis and through the fluid of 6.16 kA
for sodium and 19.4 kA for gallium are necessary. Such so-
dium experiments should indeed be possible. Experiments
with a wider �̂=0.25 gap are even easier; in that case even
gallium experiments should be possible, with a current of
9.29 kA required �see Table II�.

The Reynolds numbers that would be required to obtain
not just these Re=0 pure Tayler instabilities, but also the
transition points from m=0 to m=1 are also not difficult
to achieve; for Rout
10 cm, say, rotation rates of order
10−2 Hz are already enough.

C. Insulating cylinder walls

Calculations were also done for insulating cylinder walls;
the results are given in Figs. 6 and 7. They are generally

similar to those for the conducting cylinders, but with one
important exception. The m=0 and m=1 stability curves
now almost always cross one another, as they do for conduct-
ing cylinders only for almost current-free B� profiles. For
�̂B�1 profiles one can again observe how for weak fields
the m=0 mode stabilizes the rotation until beyond the cross-
over point the m=1 mode strongly destabilizes the rotation.

V. CONCLUSIONS

We have shown how complex the interaction of magnetic
fields and differential rotation can be in magnetohydrody-
namic Taylor-Couette flows, including also a strong depen-
dence on the magnetic Prandtl number. For large Pm the field
destabilizes the differential rotation, whereas for small Pm it
stabilizes it. However, if the field �or rather the current� is too
great, then the Tayler instabilities will always destabilize any
differential rotation.

In order to prepare laboratory experiments, we also did
calculations at values of Pm appropriate for liquid metals, for
both conducting and insulating cylinder walls. In particular,
we considered the almost uniform field profile �̂B=1. For
both conducting and insulating boundaries, the field is ini-
tially stabilizing, but after the most unstable mode switches
from m=0 to m=1 it is strongly destabilizing, until the pure
Tayler instability sets in even at Re=0.

For various gap widths and field profiles, we also com-
puted the critical Hartmann numbers and the corresponding
electric currents. Tables II–V give the required currents for
both conducting and insulating walls; note how insulating
walls �Tables IV and V� typically require lower currents than
conducting walls �Tables II and III�. The other clear trend is
that the currents are smaller for wider gaps and larger for
narrower gaps. An optimal experiment might therefore have
�̂=0.25, insulating walls, and �̂B=1, which would require
only 6.84 kA even with gallium-indium-tin �Table IV�.
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